Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations

نویسندگان

  • Jonathan C. McKinney
  • Roger D. Blandford
چکیده

Rotating magnetized compact objects and their accretion discs can generate strong toroidal magnetic fields driving highly magnetized plasmas into relativistic jets. Of significant concern, however, has been that a strong toroidal field in the jet should be highly unstable to the nonaxisymmetric helical kink (screw) m = 1 mode leading to rapid disruption. In addition, a recent concern has been that the jet formation process itself may be unstable due to the accretion of non-dipolar magnetic fields. We describe large-scale fully three-dimensional global general relativistic magnetohydrodynamic simulations of rapidly rotating, accreting black holes producing jets. We study both the stability of the jet as it propagates and the stability of the jet formation process during accretion of dipolar and quadrupolar fields. For our dipolar model, despite strong non-axisymmetric disc turbulence, the jet reaches Lorentz factors of ∼ 10 with opening half-angle θj ∼ 5◦ at 103 gravitational radii without significant disruption or dissipation with only mild substructure dominated by the m = 1 mode. On the contrary, our quadrupolar model does not produce a steady relativistic ( 3) jet due to mass loading of the polar regions caused by unstable polar fields. Thus, if produced, relativistic jets are roughly stable structures and may reach up to external shocks with strong magnetic fields. We discuss the astrophysical implications of the accreted magnetic geometry playing such a significant role in relativistic jet formation, and outline avenues for future work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Extraction from Spinning Black Holes Via Relativistic Jets

It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, t...

متن کامل

Alignment of magnetized accretion disks and relativistic jets with spinning black holes.

Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs...

متن کامل

MHD Shock Conditions for Accreting Plasma onto Kerr Black Holes - I

We extend the work by Appl and Camenzind (1988) for special relativistic magnetohydrodynamic (MHD) jets, to fully general relativistic studies of the standing shock formation for accreting MHD plasma in a rotating, stationary and axisymmetric black hole magnetosphere. All the postshock physical quantities are expressed in terms of the relativistic compression ratio, which can be obtained in ter...

متن کامل

Black hole accretion.

Black holes are most often detected by the radiation produced when they gravitationally pull in surrounding gas, in a process called accretion. The efficiency with which the hot gas radiates its thermal energy strongly influences the geometry and dynamics of the accretion flow. Both radiatively efficient thin disks and radiatively inefficient thick disks are observed. When the accreting gas get...

متن کامل

GRMHD/RMHD Simulations & Stability of Magnetized Spine-Sheath Relativistic Jets

A new general relativistic magnetohydrodynamics (GRMHD) code “RAISHIN” used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the KelvinHelmholtz (KH) velocity shear drive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008